Vocabulary
Angle-Angle (AA) Similarity Postulate

If two angles of one triangle are congruent to two angles of another triangle, then the two triangles are similar.

EXAMPLE 1
Use the AA Similarity Postulate

Determine whether the triangles are similar. If the are, write a similarity statement. *Explain* your reasoning.

Solution
Because they are both right angles, \(\angle B \) and \(\angle E \) are congruent.
By the Triangle Sum Theorem, \(38^\circ + 90^\circ + m\angle A = 180^\circ \), so \(m\angle A = 52^\circ \). Therefore, \(\angle A \) and \(\angle D \) are congruent.
So, \(\triangle ABC \sim \triangle DEF \) by the AA Similarity Postulate.

EXAMPLE 2
Show that triangles are similar

Show that the two triangles are similar.

a. \(\triangle TUV \) and \(\triangle HJK \)
b. \(\triangle LMN \) and \(\triangle PQN \)

Solution

a. Because each triangle is isosceles with a vertex angle of 115°, you can determine that each base angle is 32.5°.
So, \(\triangle TUV \sim \triangle HJK \) by the AA Similarity Postulate.

b. The diagram shows that \(LM \parallel PQ \), so \(\angle L \equiv \angle P \) by the Corresponding Angles Postulate. By the Reflexive Property, \(\angle L \equiv \angle L \).
So, \(\triangle LMN \sim \triangle PQN \) by the AA Similarity Postulate.
Exercises for Examples 1 and 2

Determine whether the triangles are similar. If they are, write a similarity statement.

1.

2.

3.

4.

Vocabulary

Theorem 6.2 Side-Side-Side (SSS) Similarity Theorem: If the corresponding side lengths of two triangles are proportional, then the triangles are similar.

Theorem 6.3 Side-Angle-Side (SAS) Similarity Theorem: If an angle of one triangle is congruent to an angle of a second triangle and the lengths of the sides including these angles are proportional, then the triangles are similar.

EXAMPLE 1

Use the SSS Similarity Theorem

Is either triangle $\triangle RST$ or $\triangle XKZ$ similar to $\triangle ABC$?
Solution

Compare $\triangle ABC$ and $\triangle RST$ by finding ratios of corresponding side lengths.

<table>
<thead>
<tr>
<th>Shortest sides</th>
<th>Longest sides</th>
<th>Remaining sides</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{AB}{RS} = \frac{3}{3} = 1$</td>
<td>$\frac{CA}{RT} = \frac{5}{4}$</td>
<td>$\frac{BC}{ST} = \frac{4}{4} = 1$</td>
</tr>
</tbody>
</table>

The ratios are not all equal, so $\triangle ABC$ and $\triangle RST$ are not similar.

Compare $\triangle ABC$ and $\triangle XYZ$ by finding ratios of corresponding side lengths.

<table>
<thead>
<tr>
<th>Shortest sides</th>
<th>Longest sides</th>
<th>Remaining sides</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{AB}{XY} = \frac{3}{6} = \frac{1}{2}$</td>
<td>$\frac{CA}{ZX} = \frac{5}{10} = \frac{1}{2}$</td>
<td>$\frac{BC}{YZ} = \frac{4}{8} = \frac{1}{2}$</td>
</tr>
</tbody>
</table>

All of the ratios are equal, so $\triangle ABC \sim \triangle XYZ$.

Exercise for Example 1

1. Which of the three triangles are similar? Write a similarity statement.

EXAMPLE 2

Use the SSS Similarity Theorem

Find the value of x that makes $\triangle ABC \sim \triangle DEF$.

Solution

STEP 1 Find the value of x that makes corresponding side lengths proportional.

$$\frac{27}{18} = \frac{15}{2(x+1)}$$
Write proportion.

$$27 \cdot 2(x + 1) = 18 \cdot 15$$
Cross Products Property

$$54x + 54 = 270$$
Simplify.
Solve for x

STEP 2 Check that the side lengths are proportional when $x = 4$.

\[
AC = 8x + 1 = 33 \quad EF = 2(x + 1) = 10
\]

\[
\frac{AB}{DE} = \frac{27}{18} = \frac{3}{2} \quad \frac{BC}{EF} = \frac{15}{10} = \frac{3}{2} \quad \frac{AC}{DF} = \frac{33}{22} = \frac{3}{2}
\]

When $x = 4$, the triangles are similar by the SSS Similarity Theorem.

EXAMPLE 3

Use the SSS Similarity Theorem

Find the value of x-that makes $\triangle POR \sim \triangle TUV$

Solution

Both $\angle R$ and $\angle V$ equal 60°, so $\angle R \cong \angle V$. Next, find the value of x that makes the sides including these angles proportional. Solving the proportion $\frac{3x + 4}{20} = \frac{30}{24}$, you obtain $x = 7$. So, by the SAS Similarity Theorem, the triangles are similar when $x = 7$.

Exercises for Examples 2 and 3

Find the value of X-that makes the triangles similar.

2.

3.